- finitely generated submodule
- конечно порождённый подмодуль
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Finitely generated module — In mathematics, a finitely generated module is a module that has a finite generating set. Equivalently, it is a homomorphic image of a free module on finitely many generators. The kernel of this homomorphism need not be finitely generated (then… … Wikipedia
Finitely-generated module — In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated R module also may be called a finite R module or finite over R.[1] Related concepts include finitely cogenerated modules, finitely… … Wikipedia
Structure theorem for finitely generated modules over a principal ideal domain — In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that… … Wikipedia
Serial module — Chain ring redirects here. For the bicycle part, see Chainring. In abstract algebra, a uniserial module M is a module over a ring R, whose submodules are totally ordered by inclusion. This means simply that for any two submodules N1 and N2 of M,… … Wikipedia
Von Neumann regular ring — In mathematics, a ring R is von Neumann regular if for every a in R there exists an x in R with : a = axa .One may think of x as a weak inverse of a ; note however that in general x is not uniquely determined by a .(The regular local rings of… … Wikipedia
Von Neumann algebra — In mathematics, a von Neumann algebra or W* algebra is a * algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. They were originally introduced by John von Neumann,… … Wikipedia
Lasker–Noether theorem — In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be written as an intersection of finitely many primary ideals (which are related to, but not quite the same as, powers … Wikipedia
Nakayama lemma — In mathematics, more specifically modern algebra and commutative algebra, Nakayama s lemma also known as the Krull–Azumaya theorem[1] governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely… … Wikipedia
Dedekind domain — In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily … Wikipedia
Injective module — In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z module Q of all rational numbers. Specifically, if Q is a submodule of some… … Wikipedia
Torsion (algebra) — In abstract algebra, the term torsion refers to a number of concepts related to elements of finite order in groups and to the failure of modules to be free. Definition Let G be a group. An element g of G is called a torsion element if g has… … Wikipedia